
Generating Empirically Optimized Numerical Software from
MATLAB Prototypes

Elizabeth Jessup,1 Boyana Norris,2 Albert Hartono,3 and Jeremy Siek4

1University of Colorado at Boulder Dept. of Computer Science, Boulder, CO 80309
jessup@cs.colorado.edu

2Argonne National Laboratory Mathematics and Computer Science Division, Argonne, IL 60439
norris@mcs.anl.gov

3Ohio State University Dept. of Computer Science and Engineering, Columbus, OH 43210
hartonoa@cse.ohio-state.edu

4University of Colorado at Boulder Dept. of Electrical and Computer Engineering, Boulder, CO 80309
jeremy.siek@colorado.edu

September 19, 2008

Abstract

The growing demand for higher levels of detail and accuracy in results means that the size and
complexity of scientific computations is increasing at least as fast as the improvements in processor
technology. Programming scientific applications is hard, and optimizing them for high performance is
even harder. The development of optimized codes requires extensive knowledge, not only of the costs
of floating-point arithmetic but also of memory access issues and compiler optimizations. Experiments
show that the complexity of this hardware-software system means that performance is difficult to predict
fully. Therefore, computational scientists are often forced to choose between investing too much time
in tuning code or accepting performance that is significantly lower than the best achievable performance
on a given architecture. In this paper, we describe the first steps toward a fully automated system for the
optimization of the matrix algebra kernels that are a foundational part of many scientific applications. To
generate highly optimized code from a high-level MATLAB prototype, we define a three-step approach.
To begin, we have developed a compiler that converts a MATLAB script into simple C code. We then
use the polyhedral optimization system PLuTo to optimize that code for coarse-grained parallelism and
locality simultaneously. Finally, we annotate the resulting code with performance tuning directives and
use the empirical performance tuning system Orio to generate many tuned versions of the same operation
using different optimization techniques, such as loop unrolling and memory alignment. Orio performs
an automated empirical search to select the best among the multiple optimized code variants. We discuss
performance results showing that the code generated by using our system significantly outperforms not
only the original simple C code but also code based on source BLAS, ATLAS-optimized BLAS, and
Intel MKL routines.

1

jessup@cs.colorado.edu
norris@mcs.anl.gov
hartonoa@cse.ohio-state.edu
jeremy.siek@colorado.edu


1 Introduction

The development of high-performance numerical codes is challenging because performance is determined

by complex interactions between the algorithm, data structure, programming language, compiler, and com-

puter architecture. Scientists seeking high performance are thus required to master advanced concepts in

computer science and carry out intricate programming tasks in addition to managing the scientific content

of their work. They must either invest substantial time in tuning their software or accept low performance.

In either case, the productivity of the scientist degrades.

Historically, the research community has pursued two separate paths toward the goal of making software

run at near-peak levels. The first of these builds on research into compilers and their associated technologies.

The holy grail of compilation research is to take an arbitrary code as input and produce optimal code as out-

put for a given language and hardware platform. Despite the immense effort that has been poured into that

approach, its success has been limited both by practical constraints (users will not tolerate compile times

that extend into several days) and by the amount of detailed information the compiler can obtain about the

software to be compiled and the hardware on which it is to execute [32, 53, 54]. The second path is to iden-

tify kernel routines that constitute the dominant costs of a wide variety of applications. When such kernels

can be identified and agreed upon by the members of the community, programmers with the required level

of technical knowledge can concentrate on producing these optimized kernel libraries for architectures of

interest. A prime example is the high-performance BLAS libraries produced by a combination of hardware

vendors, independent software vendors, and researchers. Developers who write their codes calling these

routines can achieve high performance across all supported architectures. The efforts in high-performance

library development aptly demonstrate, however, that the research into compiler technologies has not been

fully successful. If compilers could take the relatively simple code even for basic tasks such as a dense

matrix-matrix product and produce optimal code, this second approach would be unnecessary. Like com-

piler optimization, the kernel library-oriented approach has significant limitations. Support for a variety of

architectures is the most serious problem because the optimizations necessary to achieve near-peak perfor-

mance are by nature not portable. Lack of portability is particularly problematic because processor designs

are constantly changing, and constant updates are nearly impossible to maintain by hand. It is a sad fact

of the computing industry that by the time highly-optimized code is available for a given architecture, that

architecture is generally well on its way to obsolescence.

2



We are working on a combination of the two approaches designed to overcome some of their shortcom-

ings. This paper describes our multipronged approach toward the development of software infrastructure

for generating automatically tuned libraries for matrix algebra computations. We briefly overview relevant

prior and current research efforts in Section 2. In Section 3 we describe our MATLAB to C compiler and the

empirical performance tuning system Orio and its use in conjunction with the PLuTo tool suite to generate

and empirically evaluate many tuned versions of the C code generated by the MATLAB compiler. In Sec-

tion 4, we provide performance results showing that the code generated by using our system significantly

outperforms not only the original simple C code but also code based on source BLAS, ATLAS-optimized

BLAS, and Intel MKL routines.

2 Background

Existing optimizing MATLAB compilers, such as the MaJIC MATLAB compiler, include limited local

optimizations for matrix expressions, but do not perform optimizations such as loop fusion across multiple

operations as we do with the tools described in this paper. The telescoping languages project [34,33,32] uses

techniques such as strength reduction, vectorization, and procedure specialization to optimize MATLAB

scripts, but do not generate reusable optimized linear algebra routines as described in this paper.

The most common approach to tuning numerical codes is for an expert to transform the source manually,

unrolling loops, blocking for multiple levels of cache, and inserting prefetch instructions. The pitfalls of this

approach are well-understood [24]. It requires a significant amount of time and effort. Optimizing code

for one particular platform may in fact make it less efficient on other platforms and often makes it complex

and hard to understand or maintain. An alternative is the use of tuned libraries of key numerical algorithms

(e.g., BLAS [17] and LAPACK [1] for dense linear algebra, SPARSPAK [23] for sparse linear algebra, and

BLITZ++ [47] to support scientific computing in C++, or GPULib by Tech-X, an open source library for

accelerating numerical computations on Graphics Processing Units [26], to name just a few). Such libraries

are difficult to develop, and they generally cannot adapt to execution context: as we note in Section 3, a

series of calls to library routines can incur high memory costs.

Specialized code generators circumvent the high costs of manual code generation . They include tools

for basic dense linear algebra operations (ATLAS [52], PhiPAC [7, 9]), sparse linear algebra (OSKI [48]),

FFTs [21, 41]), stencil-based operations [31], and tensor computations (TCE [6]) among others. It is often

3



impossible to predict the performance of code precisely on modern computer architectures. Thus, many of

these specialized code generators exploit search strategies to identify the best (or nearly best) code for a

particular choice of problem parameters and machine. Such autotuning tools are not general but rather each

is valuable in one specific problem domain. While not all applications can be written in terms of available

libraries, the performance achieved with autotuning tools does convincingly demonstrate the advantage of

source-to-source transformation over optimizing compilers.

The best performance today is obtained through approaches like that taken by PERI [39] which involves

a labor intensive rewrite of portion of the code by a group of performance tools experts in collaboration

with application scientists. Maintaining performance of the code as the application and hardware evolves

means that the tuning process may need to be repeated. Our efforts aim to capture this performance tuning

expertise in a way that can be integrated into the application. We will thus enable performance portability

and ensure that the improvements to the application are long-lasting.

A number of source or binary transformation tools for performance-improving optimizations exist.

LoopTool [20], developed at Rice University, supports annotation-based loop fusion, unroll-and-jam, skew-

ing and tiling. A relatively new tool, POET [55] also supports a number of loop transformations. POET

offers a complex template-based syntax for defining transformations in a language-independent manner.

Other recent research efforts whose goal, at least in part, is to enable optimizations of source code to be

augmented with performance-related information include the X language [16] (a macro C-like language for

annotating C code), the Broadway [38] compiler, and various meta-programming techniques [46,50,35,13].

PLuTo [12, 11] is a source-to-source transformation tool for optimizing sequences of nested loops. PLuTo

employs a polyhedral model of nested loops, where the dynamic instance (iteration) of each statement is

viewed as an integer point in a well-defined space, called the statement’s polyhedron. Combined with a

characterization of data dependences, this representation allows the construction of mathematically correct

complex loop transformations. The transformations target both improved cache locality and parallelism.

3 Our Approach to Optimizing Composed BLAS Operations

Codes based on matrix algebra are generally constructed as a sequence of calls to the Basic Linear Algebra

Subprograms (BLAS) [18,37,17] and similar sparse matrix libraries [43,22]. Writing programs in this way

promotes readability and maintainability but can be costly in terms of memory efficiency. Specifically, the

4



retrieval of a large order matrix at each routine call can have a profound effect on performance even when

highly tuned implementations of the BLAS (e.g. [8, 51, 29, 19, 25]) are used.

The authors and other researchers have observed that it can be much more efficient to call a single spe-

cialized routine that performs multiple operations than to make successive calls to separate BLAS routines

[2, 10, 3, 4, 15, 28, 27, 49]. Single routines that carry out more than one linear algebra operation are known

as composed BLAS. As an example, consider the pair of matrix-vector products q = Ap, s = AT r, where

A is a matrix and p, q, r, and s are vectors, that comprise the computational bottlenecks of the BiConjugate

Gradient Method [5, 44] and of the GEMVER kernel examined in Section 3.1. These two operations can

be implemented as a pair of calls to the BLAS routine GEMV or they can be rewritten as a composed BLAS

consisting of the doubly nested loop encompassing both matrix-vector multiplies. In the former case, the

matrix A is accessed twice, while in the latter it is accessed only once. Our preliminary results in prior

research and in this paper indicate that this loop fusion leads to a routine that delivers significantly better

performance than does a pair of calls to the best optimized BLAS GEMV routines for large matrix orders.

Composed routines are the focus of the work presented here, but much of what we discuss generalizes to a

much broader array of computations.

Figure 1: Overview of the code generation and tuning process, optional steps are indicated with dashed
arrows.

To generate highly optimized code from a MATLAB prototype of the composed BLAS operation, we

5



will follow a three-step approach, illustrated in Figure 1. To begin, we have developed a compiler that con-

verts a MATLAB script into simple C code [30]. After generating the C code from the high-level MATLAB

prototype, we (optionally) use the source-to-source automatic parallelization tool PLuTo [12] developed at

Ohio State University to optimize for coarse-grained parallelism and locality simultaneously. Using the re-

sults of the PLuTo analysis, we insert annotations into the C code, which are then processed by our extensible

annotation system Orio to generate many tuned versions of the same operation using different optimization

parameters. Orio then performs an empirical search to select the best among the multiple optimized code

variants.

In the remainder of this section we describe each of the tools developed by the authors of this paper,

namely the MATLAB to C compiler and the Orio empirical tuning tool.

3.1 A MATLAB Compiler

We have developed a compiler that translates MATLAB scripts into C code. Figure 2 gives an overview

of the compilation process. The MATLAB kernel specification is parsed into a high-level intermediate

representation in the form of a dataflow graph. This dataflow graph is then iteratively processed until all of

the implementation choices have been made. The compilation process consists of three phases: analysis,

lowering, and optimization, which are together iterated until all of the implementation decisions have been

made. The graph is then translated into C code.

Figure 2: Overview of the MATLAB compiler.

6



3.1.1 The Dataflow Graph

An example dataflow graph for the GEMVER kernel, defined below, is given in figure 3.

A← A + u1v
T
1 + u2v

T
2

x← βAT y + z

w ← αAx

Each node represents a parameter of the kernel or an operation. The arrows indicate the flow of data. At first

the graph specifies what operations are to be performed but does not contain any implementation details.

The symbol × in the depicted graph stands variously for outer product, matrix-vector multiplication, and

scalar-vector multiplication, and it does not yet specify, for example, whether the outer products compute a

row or a column at a time of the result matrix.

Figure 3: Dataflow graph for the GEMVER kernel.

3.1.2 Analyze the Dataflow Graph

At the beginning of the analysis phase, each input and output node of the dataflow graph is labeled with

its kind (scalar, vector, matrix, or unknown) and storage format (dense row-major, dense column-major, or

unknown) according to the annotation given by the user. During analysis, the kind and storage format are

computed for the intermediate nodes and algorithms are assigned to operation nodes. The choice of algo-

rithm and the determination of kinds of storage formats are interrelated so they must be computed together.

For example, the × symbol in the graph in Figure 3 having the inputs u1 and vT
1 can be implemented by

iterating over rows first, or over columns first. The choice depends on how the result is used downstream

in the dataflow graph. In this case, the result is added to the outer product of u2 and vT
2 , so we still could

choose either option as long as we make the same choice for both outer products. Going one more step

7



downstream, there is an addition with A, which was annotated in Figure 9 to be column major. At this point

it is clear that the outer-products should be computed in column-major order.

We do not hard code this knowledge of basic linear algebra in the compiler algorithm itself, but instead

use a data-driven approach and store information regarding how to implement basic linear algebra in a

separate database, which we refer to as the linear algebra database. This separation allows us to add new

matrix formats, operations, and basic linear algebra algorithms without changes to the compiler algorithm.

The analysis algorithm makes implementation choices using the most-constrained first strategy (also

called minimum remaining values) from the artificial intelligence literature [42]. The compiler chooses the

node with the fewest matching implementations (in the linear algebra database) and assigns a matching

implementation to the node. If there is more than one match, the prototype compiler picks the first. Once

we add backtracking we will push each alternative onto the stack to be explored later. Once the choice is

made, the kind and storage format labels for the operation node itself and for the input nodes are updated

with the labels specified in the linear algebra database for the chosen algorithm. The algorithm then goes on

to find the next node with the fewest matching implementations and repeats. In this phase, only the name of

the algorithm is assigned to the operation node. The details of the implementation are not specified until the

refinement phase.

3.2 Refine the Dataflow Graph

The refinement phase resolves the implementation for each operation node in the graph into a subgraph

defining the details of the chosen algorithm. Each subgraph is an abstract representation of the loop that

implements the given operation. In each case, the subgraph has an iteration strategy that specifies how to

traverse the elements of the matrix or vector.

Figure 4 shows two steps of refinement for a matrix-vector multiplication. The first step expands the

matrix-vector multiplication according to the mv-dot algorithm: (Ax)(i) = A(i, :)x. The refinement step

replaces the × node with a subgraph that computes the inner product of a row of the matrix—the node

labeled (i, :)—with the vector, storing the result in the ith element of the result vector—the node labeled

(i). The subgraph is labeled with i = 1:m indicating that the iteration strategy is to traverse the rows of the

dense matrix. The second pass of refinement introduces another subgraph to implement the inner products.

The new subgraph iterates through each dense row, as indicated by the j = 1 : n annotation. The sign Σ

indicates that the sum of all of the iterations is computed.

8



Figure 4: The refinement of a matrix-vector product to a set of inner products and the refinement of inner
products to scalar multiplications and additions.

3.2.1 Optimize the Dataflow Graph

In the optimization step, the dataflow graph is optimized by applying conditional graph rewrite rules. One

example rewrite rule is Merge Operand Sharing Subgraphs: if two subgraphs share a common operand but

do not depend on one another, and if the iteration strategies of the two subgraphs are compatible, then merge

the subgraphs into a single subgraph. This rule is responsible for fusing the loops of the two matrix-vector

products in the GEMVER kernel. Another example rule is Merge Dependent Subgraphs: if one subgraph

depends on another subgraph, and the iteration strategies of the two subgraphs are compatible, then merge

them into a single subgraph. This rule, for example, is responsible for fusing the loops of the two outer

products in the GEMVER kernel.

The choice of which optimizations to apply to various parts of the graph depends on the characteristics

of the kernel, the algorithm, the matrix order and kind, and architectural features. The following is an

instructive example: y ← AT A(x + z + w). Assume that the compiler has already merged the two vector

additions into one subgraph, call it S1, and the two matrix products into another subgraph, call it S2. The

question then is whether it is profitable to apply the Merge Dependent Subgraphs rule one more time to

merge S1 and S2. If the three vectors plus a row of A do not fit in cache, then the merger will not be

profitable because it will cause each row of A to fall out of cache before the row gets used a second time.

On the other hand, if all three vectors plus a row of A do it in cache, then S1 and S2 should be merged.

In general, we need a way to search through the many different combinations of optimization choices and

choose a combination that minimizes memory traffic.

9



3.2.2 Translate the Dataflow Graph to C

A graph that cannot be further refined has been reduced to a collection of subgraphs representing loops over

scalar operations. The generator outputs a C loop for each subgraph. A topological sort is performed to

determine the order in which the loops and scalar operations within the loops appear in the output.

3.3 Orio

Orio [40] is an empirical tuning tool that takes as input annotated C code and generates multiple tuned

versions. Orio does not parse the application code; rather, it relies on annotations expressed as structured

comments, which contain a simplified expression of the computation, as well as directives on what transfor-

mations to apply.

Figure 5 illustrates the tuning process using Orio. In the simplest case, Orio can be used to improve code

performance by performing source-to-source transformations, such as loop unrolling and memory alignment

optimizations. First, the input to Orio is C code, which contains syntactically structured comments that

contain both the computation to be tuned, as well as various performance-tuning directives. Orio scans

the annotated input code and extracts all annotated regions. Each annotated region is then passed to the

code transformation modules for potential optimizations. The code generator then produces the final code

incorporating the newly generated optimized C code corresponding to the annotation. The original C code

is not parsed (only the annotation comments are processed) and is preserved in the new version. The user

has the option of selecting either the original or the tuned code by using a compile-time macro.

Figure 5: Overview of the Orio empirical tuning process.

Orio can also be used as an automatic performance tuning tool. The system uses its code transformation

10



modules and code generator to generate an optimized code version for each distinct combination of perfor-

mance parameters. Then the optimized code versions are executed and their performance measured, which

is subsequently compared to the performances of other previously tested code variants. After iteratively

evaluating all code variants under consideration, the best-performing code is selected as the final output

of Orio. The tuning specifications, written by users in the form of annotations (either embedded in the

source code or in separate files), are parsed and used by Orio to guide the search and tuning process. These

specifications include important information such as the used compilers, the search strategy, the program

transformation parameters, the input data sizes, etc.

We use the VADD operation, x = w + y + z, as a simple example of the annotations and tuning

specification used by Orio. Figure 6 shows the C code with annotation comments indicating that Orio

should perform memory alignment and loop transformations. In addition to simple source transformation

annotations in the example above, Orio supports a number of other transformations, including loop unroll

and jam, composite optimizations, and architecture-specific directives (e.g., for generation of calls to SIMD

intrinsics on the Blue Gene/P).

void vadd(int n, double *y, double *x1,
double *x2, double *x3)

{
int i;

/*@ begin Align (x1[],x2[],x3[],y[]) @*/
/*@ begin Loop (

transform Unroll(ufactor=20, parallelize=True)
for (i=0; i < n; i++)

y[i] = x1[i] + x2[i] + x3[i];
) @*/

for (i=0; i < n ; i++)
y[i] = x1[i] + x2[i] + x3[i];

/*@ end @*/
/*@ end @*/

}

spec align_unroll {
def build
{

arg build_command = ’mpixlc -O3 -qstrict -lm’;
}
def performance_counter
{

arg method = ’basic timer’;
arg repetitions = 10000;

}
def performance_params
{

param UF[] = range(1,20);
}
def input_params
{

param SIZE = @THESIZE@;
decl int n = SIZE;
decl double x1[n] = random;
decl double x2[n] = random;
decl double x3[n] = random;
decl double y[n] = 0;

}
def search
{

arg algorithm = ’Exhaustive’;
arg time_limit = 20;
arg run_command = ’cqsub -n 64 -t 10 -q short ’;
arg num_processes = 64;

}
}

Figure 6: Orio example: Annotated C source code (left) and a sample tuning specification for the Blue
Gene/P (right).

11



On the right-hand side of Figure 6, we show a separate tuning specification example, which contains

the information required for creating complete executable tests and running them, including variable types,

initializations (e.g., random), the search heuristic (in this case, exhaustive search is indicated, other options

are random, simplex, and simulated annealing), and execution environment details. When parallel resources

are available, Orio executes multiple variants in the same parallel job (the granularity is indicated by the

num processes field in the search portion of the tuning specification. At present the tuning specification

must be created manually. When Orio is used in conjunction with compiler tools, such as the MATLAB

compiler described in this paper, it should eventually be possible to generate most of this tuning specification

automatically.

3.4 Search Space Exploration and Evaluation

The set of all possible combinations of implementation and optimization choices is called the search space [36,

45, 14]. Although the dataflow graphs are quite small in our setting (usually less than 100 nodes), it is still

important to prune the search space to avoid an exponential compilation time. Our prototype MATLAB

compiler already performs some pruning: the optimization rewrite rules only apply under certain circum-

stances. Orio provides a number of different search heuristics to narrow the search space for near-optimal

performance, including random, simplex, and simulated annealing searches. The search algorithm is one of

the user-defined values in the Orio tuning specification.

4 Experimental Results

In this section we present performance results for a number of composed BLAS operations. The experiment

described in Section 4.1 were performed on Blue Gene/P, while the remaining experiments described in this

section were all performed on an Intel Xeon 2.80 GHz Intel(R) E5462 dual quad-core workstation with a

1600Mhz front-side bus and 16GB DDR2 FBDIMM RAM, running Ubuntu 8.04.

For the Xeon experiments, we used the Intel icc compiler (version 10.1) with the -O3 -parallel

optimization flags. We generated and tested the following different implementations of each operation:

• C from MATLAB: C code generated by the MATLAB compiler described in Section 3.1.

• BLAS: A version implemented using multiple BLAS calls and linked with the default BLAS library

available on Ubutnu 8.04.

12



• Intel MKL: The same code as the BLAS version, but linked to the Intel MKL libraries.

• ATLAS: The same code as the BLAS version, but linked to the ATLAS libraries tuned for this ma-

chine.

• Orio (Seq.): The C code generated by the MATLAB compiler annotated with sequential-only opti-

mization directives.

• Orio (Par.) : The C code generated by the MATLAB compiler annotated with both sequential and

parallel optimization directives (note that the code is the same as for Orio (Seq.), the only difference

is the value of a parallelization parameter in the separate tuning specification). This version was

compiled with the -O3 -openmp options.

4.1 VADD

The VADD operation computes the sum of three arrays, storing the result in a fourth: x = w + y + z.

We optimized the performance for the VADD operation on the Blue Gene/P at Argonne National Labo-

ratory using the IBM XLC compiler version 9.0. We measured the performance for two scenarios: us-

ing one core per processor and using all 4 cores on each processor. In the single-core case, the codes

were compiled with the following options: -O3 -qstrict -qarch=450d -qtune=450 -qhot

-qsmp=noauto. For the multicore case, the only difference in the compilation was that for the non-Orio

versions, the -qsmp=auto option was used. The parallel Orio version differs from the sequential in that it

contains parallelization directives, which result in the placement of OpenMP pragmas in the generated code.

VADD
in
w : vector,
y : vector,
z : vector

out
x : vector

{
x = w + y + z

}

Figure 7: Annotated MATLAB code (left) and MFLOP/s (right) for the VADD operation using different
code versions.

13



The ”Base” label designates the simple loop C implementation generated by the Matlab compiler, which

was simply compiled with the options mentioned earlier and executed. We tested the performance of the

IBM ESSL library and Goto BLAS for the two calls to daxpy used in the BLAS version of the code. Finally,

we annotated the simple C loop version with memory alignment and loop unrolling directives, and then used

Orio to select the best tuned version for the single-core and multicore scenarios. We observe that even for

a very simple operation, such as the vector addition above, the compiler alone is unable to obtain the same

level of performance as the empirically tuned versions. Furthermore, as expected, the BLAS performance

was worse than that of the single loop implementation, however, selecting the correct compiler options was

crucial for achieving good performance of the base version.

4.2 ATAX

The extended Matlab code for the ATAX operation, y = A′ ∗ (A ∗ x), and the corresponding performance

results are shown in Figure 8. The Orio-tuned version that incorporates PLuTo-generated loop fusion opti-

mizations and Orio parallelization directives achieves the best performance for most problem sizes, outper-

forming the Intel MKL version by a factor of 2 to 5.7 and the compiler-optimized C version by a factor of

4 to 7. The optimizations performed by both Orio versions include scalar replacement, vectorization, and

unroll and jam.

ATAX
in
A : row matrix, x : vector

out
y : vector

{
y = A’ * (A * x)

}

Figure 8: Annotated MATLAB code (left) and wall-clock time in seconds (right) for the ATAX operation
using different code versions.

14



4.3 GEMVER

The extended MATLAB code for the GEMVER operation and the corresponding performance results are

shown in Figure 9. Here we used the same PLuTo and Orio optimizations as for the ATAX example and

similarly the parallel Orio version achieves the best performance, although in this case the sequential Orio

version performs almost as well suggesting that the compiler was not able to parallelize the code very effec-

tively. For this operation, there are substantial performance differences between different BLAS versions,

with the Intel MKL version achieving performance close to that of the simple compiler code.

GEMVER
in
A : column matrix,
u1 : vector, u2 : vector,
v1 : vector, v2 : vector,
a : scalar, b : scalar,
y : vector, z : vector

out
B : column matrix,
x : vector, w : vector

{
B = A + u1 * v1’ + u2 * v2’
x = b * (B’ * y) + z
w = a * (B * x)

}

Figure 9: Annotated MATLAB code (left) and wall-clock time in seconds (right) for the GEMVER operation
using different code versions.

4.4 GESUMMV

The extended Matlab code for the GESUMMV operation, y = a∗(A∗x)+b∗(B∗x), and the corresponding

performance results are shown in Figure 10. Unlike all the other operations we tested, the best performing

version is the ATLAS one, which substantially outperforms all the alternatives. The next best performance

is exhibited by the parallel Orio version. This result motivates the development of transformations that

enable the generation of code with calls to existing optimizing libraries in addition to the low-level loop

transformations targeted by the current tools (PLuTo and Orio).

15



GESUMMV
in
A : row matrix,
B : row matrix,
x : vector,
a : scalar,
b : scalar

out
y : vector

{
y = a * (A * x) + b * (B * x)

}

Figure 10: Annotated MATLAB code (left) and wall-clock time in seconds (right) for the GESUMMV
operation using different code versions.

4.5 BiCG Kernel

The extended Matlab code for the BiCG Kernel operation,q = A ∗ p, s = A′ ∗ r, and the corresponding

performance results are shown in Figure 10. For this operation, the PLuTo analysis did not result in per-

formance improvement, thus we are showing the results obtained only through Orio transformations, which

included vectorization, scalar replacement, and unroll and jam. Again the best performance was exhibited

by the parallel Orio version, while all the BLAS versions performed worse than the compiler-optimized C

loop version.

BICG
in
A : column matrix,
p : vector, r : vector

out
q : vector, s : vector

{
q = A * p
s = A’ * r

}

Figure 11: Annotated MATLAB code (left) and wall-clock time in seconds (right) for the BiCG kernel
operation using different code versions.

16



5 Conclusions and Future Work

We have described an approach to generating tuned linear algebra libraries from high-level annotated MAT-

LAB code that involves a suite of tools to (1) translate the MATLAB code to C, (2) analyze the resulting

loops and identify locatility and parallelism-enhancing optimizations using PLuTo, and (3) annotate the re-

sulting C code with syntactic performance directives and use Orio to generate multiple optimized versions

and empirically select the one with the best performance. Preliminary results from experiments with several

composed BLAS operations show that in almost all cases, the optimized code generated by this suite of tools

significantly outperforms the versions using tuned BLAS and aggressive compiler optimizations.

The positive initial results from our approach to generating tuned linear algebra routines motivate sev-

eral future lines of investigation. At present there are a number of manual steps involved in obtaining a

compiled tuned linear algebra library from the high-level extended MATLAB descriptions. We will work on

interfacing our separately developed tools more closely and automating their interactions. This would en-

able application developers to easily produce custom linear algebra libraries tuned for specific architectures.

We will also investigate extending the supported functionality of our MATLAB compiler beyond composed

BLAS operations, thus benefiting a wider spectrum of applications.

Orio is growing in a number of directions. While it automates much of the tuning process, a number of

steps still require nontrivial manual input. Orio’s modular design allows new transformations to be added

easily, which presents many opportunities for expanding the existing set of optimizations with new ones

implemented from scratch or through interfaces to other tools, as we have successfully done with PLuTo.

We are also working on generating code that contains special cases for different input parameter values since

in many cases different optimizations are optimal for different input sizes. We will also continue developing

the parallel empirical search infrastructure; it is clear that more feedback between the MATLAB compiler

and Orio will result in automation of the performance directive annotation process and a much more effective

exploration of the search space. We plan to use a fast analytic cost function in the MATLAB compiler

implementation to prune out regions of the search space that will not produce competitive implementations.

The cost function is based on a model of the computer architecture, but does not necessarily account for

all the details. Once the search space is narrowed, we will use the Orio empirical testing results with

representative data sets to determine the exact performance of the alternatives and choose the best one.

Finally, while Orio currently generates various loop transformations, it does not generate calls to existing

17



library implementations. For this paper, we implemented the BLAS versions of all operations manually. Our

past success with identifying Blue Gene/L intrinsics from expression graphs motivate further research on

identifying BLAS and other established library operations from the expression graphs of the MATLAB code.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357.

References

[1] ANDERSON, E., BAI, Z., BISCHOF, C., DEMMEL, J., DONGARRA, J., CROZ, J. D., GREENBAUM,
A., HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. LAPACK Users’
Guide, second ed. SIAM, Philadelphia, PA, 1995.

[2] ASHBY, T., KENNEDY, A., AND O’BOYLE, M. Cross component optimisation in a high level
category-based language. In Euro-Par 2004 Parallel Processing: 10th International Euro-Par Con-
ference (Pisa, Italy, August 2004), vol. 3149 of Lecture Notes in Computer Science, Springer-Verlag
GmbH, p. 654.

[3] BAKER, A. H., DENNIS, J. M., AND JESSUP, E. R. An efficient block variant of GMRES. SIAM J.
Sci. Comput. 27, 5 (2006), 1608–1626.

[4] BAKER, A. H., JESSUP, E. R., AND MANTEUFFEL, T. A technique for accelerating the convergence
of restarted GMRES. SIAM Journal on Matrix Analysis and Applications 26, 4 (2005), 962–984.

[5] BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO, J., DONGARRA, J., EIJKHOUT,
V., POZO, R., ROMINE, C., AND DER VORST, H. V. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[6] BAUMGARTNER, G., AUER, A., BERNHOLDT, D. E., BIBIREATA, A., CHOPPELLA, V., COCIORVA,
D., GAO, X., HARRISON, R. J., HIRATA, S., KRISHNAMOORTHY, S., KRISHAN, S., LAM, C.-C.,
LU, Q., NOOIJEN, M., PITZER, R. M., RAMANUJAM, J., SADAYAPPAN, P., , AND SIBIRYAKOV, A.
Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models. In
Proceedings of the IEEE (Feb 2005), vol. 93, IEEE, pp. 276–292.

[7] BILMES, J., ASANOVIC, K., CHIN, C.-W., AND DEMMEL, J. Optimizing matrix multiply using
PHiPAC: A portable, high-performance, ANSI C coding methodology. In International Conference on
Supercomputing (1997), pp. 340–347.

[8] BILMES, J., ASANOVIC, K., CHIN, C.-W., AND DEMMEL, J. Optimizing matrix multiply using
PHiPAC: a portable, high-performance, ANSI C coding methodology. In ICS ’97: Proceedings of the
11th International Conference on Supercomputing (New York, NY, USA, 1997), ACM Press, pp. 340–
347.

[9] BILMES, J., ASANOVIĆ, K., DEMMEL, J., LAM, D., AND CHIN, C. The PHiPAC WWW home
page, 2006. http://www.icsi.berkeley.edu/˜bilmes/phipac.

18

http://www.icsi.berkeley.edu/~bilmes/phipac


[10] BLACKFORD, L. S., DEMMEL, J., DONGARRA, J., DUFF, I., HAMMARLING, S., HENRY, G.,
HEROUX, M., KAUFMAN, L., LUMSDAINE, A., PETITET, A., POZO, R., REMINGTON, K., AND

WHALEY, R. C. An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math.
Softw. 28, 2 (2002), 135–151.

[11] BONDHUGULA, U., BASKARAN, M., KRISHNAMOORTHY, S., RAMANUJAM, J., ROUNTEV, A.,
AND SADAYAPPAN, P. Automatic transformations for communication-minimized parallelization and
locality optimization in the polyhedral model. In International Conference on Compiler Construction
(ETAPS CC) (Apr. 2008).

[12] BONDHUGULA, U., HARTONO, A., RAMANUJAM, J., AND SADAYAPPAN, P. PLuTo: A practical
and fully automatic polyhedral program optimization system. In Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation (PLDI 08) (Tucson, AZ,
June 2008).

[13] CHIBA, S. A metaobject protocol for C++. In ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (Oct 1995), pp. 285–299.

[14] COOPER, K. D., GROSUL, A., HARVEY, T. J., REEVES, S., SUBRAMANIAN, D., TORCZON, L.,
AND WATERMAN, T. ACME: Adaptive compilation made efficient. In LCTES’05: Proceedings of
the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (NewYork, NY, 2005), ACM, pp. 69–77.

[15] DENNIS, J. M. Automated memory analysis: improving the design and implementation of iterative
algorithms. PhD thesis, University of Colorado, Boulder, CO, USA, 2005.

[16] DONADIO, S., BRODMAN, J., ROEDER, T., YOTOV, K., RTHOU, D. B., COHEN, A., GARZARÁN,
M. J., PADUA, D., AND PINGALI, K. Language for the compact representation of multiple pro-
gram versions. In Proceedings of Languages and Compilers for Parallel Computing (LCPC¡D5¿05),
no. 4339 in Lecture Notes in Computer Science. Springer-Verlag, Germany, 2006, pp. 136–151.

[17] DONGARRA, J. J., CROZ, J. D., DUFF, I., AND HAMMARLING, S. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw. 16, 1 (1990), 1–17.

[18] DONGARRA, J. J., CROZ, J. D., HAMMARLING, S., AND HANSON, R. J. An extended set of Fortran
basic linear algebra subprograms. ACM Trans. Math. Softw. 14, 1 (1988), 1–17.

[19] Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL.
http://www.ibm.com/systems/p/software/essl.html, 2007.

[20] FOWLER, R., JIN, G., AND MELLOR-CRUMMEY, J. Increasing temporal locality with skewing and
recursive blocking. In Proceedings of SC01: High-Performance Computing and Networking (Nov.
2001).

[21] FRIGO, M. A fast Fourier transform compiler. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’99), Atlanta, GA (1999).

[22] GEORGE, A., AND NG, E. A brief description of SPARSPAK Waterloo sparse linear equations pack-
age. SIGNUM Newsl. 16, 2 (1981), 17–20.

[23] GEORGE, A., AND NG, E. A new release of SPARSPAK: the Waterloo sparse matrix package.
SIGNUM Newsl. 19, 4 (1984), 9–13.

19



[24] GOEDECKER, S., AND HOISIE, A. Performance optimization of numerically intensive codes. Soft-
ware Environments & Tools 12 (2001).

[25] GOTO, K., AND VAN DE GEIJN, R. High-performance implementation of the level-3 BLAS. Tech.
Rep. TR-2006-23, The University of Texas at Austin, Department of Computer Sciences, 2006.

[26] Gpulib home page.
http://GPULib.txcorp.com, 2008.

[27] GROPP, W. D., KAUSHIK, D. K., KEYES, D. E., AND SMITH, B. F. High-performance parallel
implicit CFD. Parallel Computing 27 (2001), 337–362.

[28] HOWELL, G. W., DEMMEL, J. W., FULTON, C. T., HAMMARLING, S., AND MARMOL, K. Cache
efficient bidiagonalization using BLAS 2.5 operators. ACM Transactions on Mathematical Software
34, 3 (2008). to appear.

[29] Intel Math Kernel Library. http://www.intel.com/cd/software/products/asmo-na/eng/307757.htm,
2007.

[30] JESSUP, E., KARLIN, I., , AND SIEK, J. Build to order linear algebra kernels. In Proceedings of the
IEEE International Symposium on Parallel and Distributed (IPDPS 2008) (2008), IEEE, pp. 1–8.

[31] KAMIL, S., DATTA, K., WILLIAM, S., OLIKER, L., SHALF, J., AND YELICK, K. Implicit and
explicit optimizations for stencil computations. In Proceedings of MSPC’06 October 22, 2006, San
Jose, CA, USA (2006).

[32] KENNEDY, K. Telescoping languages: A compiler strategy for implementation of high-level domain-
specific programming systems. In Proceedings of IPDPS 2000 (May 2000). CD-ROM Proceedings.

[33] KENNEDY, K., BROOM, B., CHAUHAN, A., FOWLER, R., GARVIN, J., S KOELBEL, C., MCCOSH,
C., AND MELLOR-CRUMMEY, J. Telescoping languages: A system for automatic generation of
domain languages. Proceedings of the IEEE 93, 3 (2005), 387–408.

[34] KENNEDY, K., ET AL. Telescoping languages project description. http://telescoping.rice.
edu, 2006.

[35] KICZALES, G., DES RIVIERES, J., AND BOBROW, D. G. The Art of the Meta-Object Protocol. MIT
Press, Cambridge (MA), 1991.

[36] KISUKI, T., KNIJNENBURG, P. M. W., AND OBOYLE, M. F. P. Combined selection of tile sizes
and unroll factors using iterative compilation. In Proceedings of the 2000 International Conference
on Parallel Architectures and Compilation Techniques, Washington, DC, USA (2000), IEEE Computer
Society.

[37] LAWSON, C. L., HANSON, R. J., KINCAID, D. R., AND KROGH, F. T. Basic linear algebra subpro-
grams for Fortran usage. ACM Trans. Math. Softw. 5, 3 (1979), 308–323.

[38] LIN, C., AND GUYER, S. Z. Boradway: A compiler for exploiting the domain-specific semantics of
software li braries. Proceedings of the IEEE 93, 2 (July 2005), 342–357.

[39] LUCAS, R., ET AL. PERI: Performance Engineering Research Institute. http://peri-scidac.
org, 2008.

20

http://telescoping.rice.edu
http://telescoping.rice.edu
http://peri-scidac.org
http://peri-scidac.org


[40] NORRIS, B., HARTONO, A., AND GROPP, W. Annotations for productivity and performance porta-
bility. In Petascale Computing: Algorithms and Applications, Computational Science. Chapman &
Hall / CRC Press, Taylor and Francis Group, 2007, pp. 443–462. Preprint ANL/MCS-P1392-0107.

[41] PUSCHEL, M., MOURA, J. M. F., JOHNSON, J. R., PADUA, D., VELOSO, M. M., SINGER, B. W.,
XIONG, J., FRANCHETTI, F. ., GACIC, A., VORONENKO, Y., CHEN, K., JOHNSON, R. W., AND

RIZZOLO, N. SPIRAL: Code generation for DSP transforms. In Proceedings of the IEEE, Special
Issue on Program Generation, Optimization, and Platform Adaptation (Feb 2005), vol. 93, pp. 216–
231.

[42] RUSSELL, S., AND NORVIG, P. Articial Intelligence: A Modern Approach, 2nd ed. Prentice Hall,
Inc., 2003.

[43] SAAD, Y. SPARSKIT: A basic tool-kit for sparse matrix computations. University of Minnesota,
Department of Computer Science and Engineering.

[44] SAAD, Y. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 2003.

[45] TRIANTAFYLLIS, S., VACHHARAJANI, M., VACHHARAJANI, N., AND AUGUST, D. I. Compiler
optimization-space exploration. In CGO 03: Proceedings of the international symposium on Code
generation and optimization (Washington, DC, USA, 2003), IEEE Computer Society, p. 204215.

[46] VELDHUIZEN, T. Expression templates. C++ Report 7, 5 (June 1995), 26–31.

[47] VELDHUIZEN, T. L. Blitz++: The library that thinks it is a compiler. In Modern Software Tools
for Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds. Birkhauser (Springer-
Verlag), Boston, 1997.

[48] VUDUC, R., DEMMEL, J., AND YELICK, K. OSKI: A library of automatically tuned sparse matrix
kernels. In Proceedings of SciDAC 2005 (June 2005), vol. 16 of Journal of Physics: Conference Series,
Institute of Physics Publishing, pp. 521–530.

[49] VUDUC, R., GYULASSY, A., DEMMEL, J. W., AND YELICK, K. A. Memory hierarchy optimiza-
tions and performance bounds for sparse AT Ax. Tech. Rep. UCB/CSD-03-1232, EECS Department,
University of California, Berkeley, 2003.

[50] WEISE, D., AND CREW, R. Programmable syntax macros. In SIGPLAN Conference on Programming
Language Design and Implementation (1993), pp. 156–165.

[51] WHALEY, R. C., AND DONGARRA, J. J. Automatically tuned linear algebra software. In Supercom-
puting ’98: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (CDROM) (Washing-
ton, DC, USA, 1998), IEEE Computer Society, pp. 1–27.

[52] WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. Automated empirical optimization of software
and the ATLAS project. Parallel Computing 27, 1–2 (2001), 3–35. Also available as University
of Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000. www.netlib.org/lapack/
lawns/lawn147.ps.

[53] WOLFE, M. Optimizing Supercompilers for Supercomputers. Pitman, London, 1989.

[54] WOLFE, M. High Performance Compilers for Parallel Computers. Addison-Wesley, 1996.

21

www.netlib.org/lapack/lawns/lawn147.ps
www.netlib.org/lapack/lawns/lawn147.ps


[55] YI, Q., AND¡A0¿ HAIHANG YOU¡A0¿AND RICHARD VUDUC, K. S., AND QUINLAN, D. POET:
Parameterized optimizations for empirical tuning. In Proceedings of the Parallel and Distributed
Processing Symposium, 2007 (Mar 2007), IEEE, pp. 1–8.

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne Na-
tional Laboratory (”Argonne”). Argonne, a U.S. De-
partment of Energy Office of Science laboratory, is
operated under Contract No. DE-AC02-06CH11357.
The U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf
of the Government.

22


	Introduction
	Background
	Our Approach to Optimizing Composed BLAS Operations
	A MATLAB Compiler
	The Dataflow Graph
	Analyze the Dataflow Graph

	Refine the Dataflow Graph
	Optimize the Dataflow Graph
	Translate the Dataflow Graph to C

	Orio
	Search Space Exploration and Evaluation

	Experimental Results
	VADD
	ATAX
	GEMVER
	GESUMMV
	BiCG Kernel

	Conclusions and Future Work

